On Not Making Dissimilarities Euclidean

نویسندگان

  • Elzbieta Pekalska
  • Robert P. W. Duin
  • Simon Günter
  • Horst Bunke
چکیده

Non-metric dissimilarity measures may arise in practice e.g. when objects represented by sensory measurements or by structural descriptions are compared. It is an open issue whether such non-metric measures should be corrected in some way to be metric or even Euclidean. The reason for such corrections is the fact that pairwise metric distances are interpreted in metric spaces, while Euclidean distances can be embedded into Euclidean spaces. Hence, traditional learning methods can be used. The k-nearest neighbor rule is usually applied to dissimilarities. In our earlier study [12,13], we proposed some alternative approaches to general dissimilarity representations (DRs). They rely either on an embedding to a pseudo-Euclidean space and building classifiers there or on constructing classifiers on the representation directly. In this paper, we investigate ways of correcting DRs to make them more Euclidean (metric) either by adding a proper constant or by some concave transformations. Classification experiments conducted on five dissimilarity data sets indicate that non-metric dissimilarity measures can be more beneficial than their corrected Euclidean or metric counterparts. The discriminating power of the measure itself is more important than its Euclidean (or metric) properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Euclidean Dissimilarities: Causes, Embedding and Informativeness

In many pattern recognition applications object structure is essential for the discrimination purpose. In such cases researchers often use recognition schemes based on template matching which lead to the design of non-Euclidean dissimilarity measures. A vector space derived from the embedding of the dissimilarities is desirable in order to use general classifiers. An isometric embedding of the ...

متن کامل

Ricci flow embedding for rectifying non-Euclidean dissimilarity data

Pairwise dissimilarity representations are frequently used as an alternative to feature vectors in pattern recognition. One of the problems encountered in the analysis of such data, is that the dissimilarities are rarely Euclidean, while statistical learning algorithms often rely on Euclidean dissimilarities. Such non-Euclidean dissimilarities are often corrected or a consistent Euclidean geome...

متن کامل

Relational Generative Topographic Map

The generative topographic mapping (GTM) has been proposed as a statistical model to represent high dimensional data by means of a sparse lattice of points in latent space, such that visualization, compression, and data inspection become possible. Original GTM is restricted to Euclidean data points in a vector space. Often, data are not explicitly embedded in a Euclidean vector space, rather pa...

متن کامل

تبیین الگوی نااقلیدسی در برنامه ریزی شهری

With domination of Kant's epistemology and instrumental reason in social science and human geography, interpretation of  space have been based on neo physics that often it is equivalent with intuitive and physical  experience and the place of capital and it's reproduction. Therefore we firstly have represented of ontological transform of space concept and by the way we enumerate the c...

متن کامل

Non-Euclidean Dissimilarities: Causes and Informativeness

In the process of designing pattern recognition systems one may choose a representation based on pairwise dissimilarities between objects. This is especially appealing when a set of discriminative features is difficult to find. Various classification systems have been studied for such a dissimilarity representation: the direct use of the nearest neighbor rule, the postulation of a dissimilarity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004